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Acoustic two-dimensional harmonic radiation and rigid body scattering from cylinders
of arbitrary shape with a plane of symmetry are addressed using an internal line monopole
and dipole source distribution along the plane of symmetry. A previously developed least
mean square error method is used to solve the Neumann boundary value problem. In
contrast to the earlier method, Singular Value Decomposition (SVD) methods are
presented to determine the line source harmonic multipole distributions from the specified
normal velocity at the cylindrical surface and pressures are simply expressed here as line
integrals of the source distributions which in the far field reduce to Fourier transform
relationships. Several special examples are presented to illustrate the general spatial
characteristics of the source strength distributions for cylinders with widely varying aspect
ratios. Exact source strength distributions for circular cylinders are developed using the
Fourier transform relationships. The resulting source strength distributions involve spatial
derivatives of Dirac delta functions and thus have a vanishingly small region of support
about the center of the cylinder. In contrast, for cylinders with large aspect ratios the spatial
characteristics of the source strength distributions are more closely matched to the normal
velocity distribution.
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1. INTRODUCTION

Acoustic two-dimensional harmonic radiation and rigid body scattering may be
formulated as classical boundary value problems in physics. Such problems require the
solution of the reduced scalar wave equation subject to specified boundary conditions on
the surface or contour of interest. Similar boundary value problems occur in a wide range
of hydrodynamic, elastic and electromagnetic field problems. There are thus a multitude
of well known and established analytical methods [1, 2] which have been developed to
address such problems. More recent developments and techniques are included in the
lecture notes of Crighton et al. [3].

Bowman et al. [4] have compiled a comprehensive summary of classical methods and
numerical results for electromagnetic and acoustic scattering by bodies of various shapes
for which the wave equation is separable. Extensive numerical results for both two- and
three-dimensional harmonic problems are presented for line source, point source and plane
wave excitations. In particular, numerical results are presented for various two-
dimensional scattering problems involving infinite strips, circular and elliptical cylinders.

Two-dimensional acoustic harmonic radiation and scattering from rigid cylinders is still
a research topic of interest. As a result of the availability of computers, integral equation
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methods [5–7] have become the method of present choice for addressing the general
acoustic harmonic radiation and scattering problem at low and mid-frequencies for
arbitrary geometries. Such methods have well recognized shortcomings; e.g., at high
frequencies. Alternative methods of solution thus continue to be developed.

In the present paper acoustic two-dimensional harmonic radiation and rigid body
scattering problems from cylinders of arbitrary shape with a plane of symmetry are
addressed. A previously developed Least Mean Square (LMS) error method [8–10] is used
to solve the Neumann boundary value problem via the use of an internal line monopole
and dipole source distribution along the plane of symmetry. Singular Value Decomposition
(SVD) methods are presented to determine the line source harmonic multi-pole
distributions from the specified normal velocity at the cylindrical surface. Also, in contrast
to the earlier method in which the surface pressure was first evaluated from the source
distributions and then the Helmholtz integral was used to evaluate the field, pressures are
simply obtained here from line integrals of the source distributions which in the far field
reduce to Fourier transform relationships.

In the earlier papers on the subject, numerical studies of the basic LMS method to
address acoustic radiation and scattering problems were presented. Numerical results were
presented to illustrate the characteristics of the source distributions and the associated
pressure fields for cylindrical and elliptical cylinders. Analytical methods are employed
here to determine closed form solutions for the source distributions for selected geometries.
Several special examples are presented to illustrate the general spatial characteristics of the
source strength distributions for cylinders with widely varying aspect ratios. Exact source
strength distributions for circular cylinders are developed using the Fourier transform
relationships. The resulting source strength distributions involve spatial derivatives of
Dirac delta functions and thus have a vanishingly small region of support about the center
of the cylinder. In contrast, for cylinders with large aspect ratios the spatial characteristics
of the source strength distributions are shown to be more closely matched to the normal
velocity distribution.

2. THEORY

Consider a smooth cylinder which has a plane of symmetry and is in contact with an
external ideal fluid as shown in Figure 1. Since the acoustic two-dimensional harmonic
radiation and scattering problem is of interest here, the incident harmonic pressure field
and/or the harmonic normal velocity on the surface of the cylinder are specified. The total
harmonic pressure field in the external fluid is to be determined.

Figure 1. A cylinder with plane of symmetry.
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In order to address the acoustic radiation/scattering problem of interest it is convenient
to first note that the total pressure field can be expressed as

pt (x)=pi (x)+p(x), (1)

where the total pressure field pt (x) is decomposed into the incident harmonic pressure field
pi (x) and the pressure field p(x) which accounts for the radiation due to the specified
normal velocity and/or the rigid cylinder scattering. This latter field can be posed as the
solution of the following Neumann boundary value problem:

92p(x)+k2p(x)=0, x$V, (2a)

1p(x)
1n

=−
1pi (x)

1n
−jkr0c0vr (x), x$S, (2b)

lim
r:a

r1/2[1p/1r+jkp]=0, (2c)

where k is the acoustic wavenumber, n denotes the exterior normal on the surface S, i.e.,
into the fluid volume V, and r0 and c0 are the density and acoustic wave speed of the fluid.
In equation (2b) the incident pressure field and the normal velocity of the surface vr (x)
for x$S are specified functions. Equation (2c) is the Sommerfeld radiation condition which
is required to ensure uniqueness of the solution [1–3].

In light of equations (1) and (2) it is obvious that if pi (x)=0 for all x$V, then p(x)
is the solution of the radiation problem; however, if vr (x)=0 for x$S, then p(x) is the
solution of the rigid body scattering problem. The total pressure field is thus considered
here to be the superposition of the two fields. Interactions between the fields are neglected
due to small amplitude assumptions; e.g., the interaction of the incident field with the
moving boundary is neglected.

It is apparent from equations (1) and (2) that the acoustic radiation/scattered pressure
field has been expressed as the solution of a Neumann boundary value problem where the
normal velocity on the surface S is a specified function of position, i.e.,

v(s)=−vi (xs )+vr (xs ), (3)

where vi (xs ) is the normal velocity of the incident wave field, vr (xs ) is the specified normal
velocity for the radiation problem and xs is a position vector to a point on S, where s is
a contour parameter on the cylinder with 0 Q sQ =smax = as indicated in Figure 1. It is thus
apparent that for either the acoustic radiation or scattering problem of present interest,
v(s) is a prescribed function on the surface S.

In general, the normal velocity v(s) can be decomposed into symmetric and
antisymmetric components as

v(s)= ve(s)+ vo(s), (4a)

where the symmetric component is

ve(s)= 1
2[v(s)+v(−s)] (4b)

and the antisymmetric component is

vo(s)= 1
2[v(s)−v(−s)]. (4c)
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Figure 2. The linear source density distribution and geometry.

The pressure field p(x) can then also be decomposed into symmetric and antisymmetric
fields, i.e.,

p(x)=pe(x)+po(x), (5)

where it is clearly apparent that pe(x) is determined by ve(s) and po(x) is determined by vo(s).
Internal line source distributions along the plane of symmetry are now used here to

determine the pressure field p(x) in the external fluid. A detailed development of the
method was presented in earlier papers [8, 9]; hence, a summary of the approach is
presented here. To determine pe(x) (po(x)), linear distributions of monopole (dipole) line
sources along the plane of symmetry of the surface are used to match the associated normal
velocity component ve(s) (vo(s)) indicated in equation (4). The resultant internal linear
monopole and dipole source distributions, which are illustrated in Figure 2, automatically
ensure the correct symmetry of the resultant pressure fields.

Consider first a linear distribution of unknown internal monopole line sources along the
axis of symmetry of the surface. The associated pressure field in the fluid external to
the cylinder can be expressed as the following line integral along the axis of symmetry of
the surface:

pm (x)= jkr0c0 g [g(x, x0)]y0 =0sm(x0) dx0 (6a)

where sm (x) is the unknown monopole source density (source strength per unit length) at
y=0 and g(x, x0) is the two-dimensional free space Green function, i.e.,

g(x, x0)=−(j/4)H0(kz(x− x0)2 + ( y− y0)2), (6b)

where H0() is the zeroth Hankel function of the second kind. On the surface S the pressure
can then be expressed as

pm (xs )= jkr0c0 g [g(xs , x0)]y0 =0sm (x0) dx0 (7a)

where xs denotes a position vector to a point specified by s along the contour. It then
follows from the linearized momentum equation that the associated normal velocity at the
surface can be expressed as

vm (s)=g−n̂ · 9s [g(xs , x0)]y0 =0sm (x0) dx0. (7b)



2-      309

Now consider a linear distribution of unknown internal dipole line sources along the
axis of symmetry of the surface. The pressure field in the fluid external to the cylinder can
be expressed as the following line integral along the axis of symmetry of the surface:

pd (x)=g $1g(x, x0)
1y0 %y0 =0

sd (x0) dx0. (8)

Here sd (x) is an unknown dipole source density (dipole strength per unit length) at y=0.
The associated surface pressure field can then be expressed as the following line integral
along the axis of symmetry of the surface,

pd (xs )=g $1g(xs , x0)
1y0 %y0 =0

sd (x0) dx0 (9a)

and the associated normal velocity on the surface can then be expressed as

vd (s)=− g nx
jk r0 c0

· 9s $1g(xs , x0)
1y0 %y0 =0

sd (x0) dx0. (9b)

An LMS or least mean square error criteria is now used to determine the unknown
source strengths of the internal monopole and dipole source distributions [9]. More
specifically, functionals Je and Jo are introduced as follows to measure the error between
the specified symmetric and antisymmetric component of the normal surface velocity v(s)
and that due to the appropriate internal source density distribution:

Je =g =ve(s)− vm (s) =2 ds and J0 =g =vo(s)− vd (s) =2 ds. (10a, b)

The general procedure to minimize each of the functionals Je and J0 is identical. For
both cases, the minimization procedure requires the solution of an integral equation,

v̂(s)=gy

k(s =x)s(x) dx (11)

where v̂(s) is known and k(s =x) is the appropriate kernel for the unknown monopole or
dipole source distribution as indicated in equation (7b) and (9b) respectively.

The unknown line source density distribution in equation (11) may be approximated by
using any of several approximation methods, which leads to the generic representation

s(x)= s
N

i=1

hi (x)si , (12)

where the hi may be a set of orthogonal functions over the length of the line source, e.g.,
Legendre functions, or may be a suitable set of local basis or interpolation functions which
are defined within a subinterval about xi . As a limiting case of the latter class the hi may
be Dirac delta functions which result in a discrete approximation to the continuous
distribution. It then follows from equations (11) and (12) that v̂(s) can be represented as

v̂(s)= s
N

i=1

Ki (s)si , (13a)
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where the Ki (s) are simply related to the kernel k(s =x) as follows:

Ki (s)=g k(s =x)hi (x) dx. (13b)

For an MqN point collocation on the surface S, it follows from equation (13) that

v̂(sm )= s
N

i=1

Ki (sm )si , m=1, . . . , M, (14a)

which can also be expressed in matrix form as

[K]s= v, (14b)

where [K] is an M×N matrix with MqN. SVD methods [11] can then be used to express
s as

s=[K]†v, (15)

where [K]† denotes the pseudo-inverse of [K]. It is noted that, for the overdetermined
system of interest here, in which MqN, SVD produces a solution that is the best
approximation in the least squares sense: i.e., the solution vector is determined so as to
minimize Jd , where

Jd = = [K]s− v=2. (16)

Once the monopole and dipole source densities are determined from equation (15), the
corresponding surface pressures can then be determined from equations (7a) and (9a)
respectively by using simple quadrature methods. The resulting surface pressure could then
be substituted into the Helmholtz integral solution for the external pressure field and the
external pressure field could be simply determined by using quadrature methods as noted
in earlier papers. In contrast to the use of the Helmholtz integral solution, the external
pressure field can also be evaluated directly from equations (6a) and (8) by using simple
quadrature methods. Although this latter approach is valid for both the near and far field
it is particularly appealing for the far field, where Fourier transform methods can be
introduced to provide additional insight into the general approach, as shown in the
following section.

In order to obtain the desired Fourier transform relationships, it is first noted that for
field points at large distances from the cylindrical surface of interest, the free space
two-dimensional Green function of interest can be approximated as

[g(x, x0)]y0 =0 0−(j/4)z2/pkR e−j(kR− x0 cos f− p/4), (17)

where (R, f) denotes the cylindrical co-ordinates of the point of interest. It then follows
that the kernel of equation (9b) can be approximated as follows:

1g(x, x0)
1y0 %y0 =0

0−
k sin f

4 X 2
pkR

e−j(kR− x0 cos f− p/4). (18)

The monopole and dipole far field pressures in equations (6a) and (8) can then be expressed
as

pm (R, f)0(kr0c0/4)z2/pkR e−j(kR− p/4)s̄m (k cos f) (19a)
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and

pd (R, f)0 (k/4)z2/pkR e−j(kR− p/4)s̄d (k cos f) sin f, (19b)

where sm (kx ) and sd (kx ) are simply one-dimensional Fourier transforms of the
corresponding source distributions; i.e.,

s̄m (kx )=g
a

−a

sm (x) ejkxx dx, s̄d (kx )=g
a

−a

sd (x) e jkxx dx. (20a, b)

3. SPECIAL CASES

Several results of a general nature for the internal multi-pole source distributions
introduced in the preceding section are first presented here for the case of cross-sectional
areas S which exhibit reflective symmetry. By definition, such surfaces are symmetric about
both the x- and y-axes, as illustrated in Figure 3. If the normal veolcity on the surface
S is symmetric or antisymmetric about y, each of the multipole distributions exhibits the
same symmetry as a function of x.

As an example of interest, consider a velocity distribution v(s) which is an even function
of s, i.e., v(s)= ve(s), and is also even about the y-axis. It is apparent from the preceding
development that sm (x)= sm (−x) is a symmetric function. For the case in which the
velocity distribution v(s) is an even function of s, i.e., v(s)= ve(s), and is odd about the
y-axis, it is apparent that sm (x)=−sm (−x) is an antisymmetric function. For this latter
class of functions, the Fourier transform relationship (6a) can then be simply used to show
that the pressure is zero on the y-axis. Similar arguments for velocity distributions which
are odd functions of s, i.e., v(s)= vo(s), and also odd about the y-axis, results in
antisymmetric dipole distributions for which sd (x)=−sd (−x). For this latter class of
functions, the pressure is zero on both the x- and y-axes.

Now consider the special case of a circular cylinder with a radius a, as indicated in
Figure 4. The acoustic radiation and scattering from such a cylinder is a classical boundary
value problem which is readily solved by using the method of separation of variables [12]
to address the problem as stated in equations (1) and (2). Since closed form solutions for
these problems can be readily obtained, such solutions can be used to obtain insight into
the nature of the source distributions which form the basis of the internal source density
method presented here to solve the problems.

Figure 3. Examples of reflective surfaces.
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Figure 4. A circular cylinder.

In general, the normal velocity distribution of interest on the surface can be expressed
as the Fourier series

v(a, s)= s
a

n=0

Vn cos (ns/a)+ s
a

n=1

Un sin (ns/a), (21a)

where s= af. The associated pressure field in the fluid can similarly be expressed as a
Fourier series in which the coefficients are simply obtained by matching the normal velocity
at the boundary to obtain the following expansion:

p(R, f)=−jr0c0 s
a

n=0

Hn (kR)
H'n(ka)

[Vn cos (nf)+Un sin (nf). (21b)

In order to obtain an insight into the nature of the internal source distributions for such
a problem, it is sufficient to consider only a single circumferential harmonic, i.e.,

v(a, f)=Vn cos (nf)+Un sin (nf), (22)

where n is now an arbitrary positive integer. It is obvious that the cos (nf) is associated
with a linear monopole distribution sm,n (x), whereas the sin(nf) is associated with a linear
dipole distribution sd,n (x). If the internal source distributions for such a problem can be
determined, superposition can simply be used to address the more general acoustic
radiation and scattering problem of interest.

It is apparent from equation (21b) that the external pressure field corresponding to the
velocity in equation (22) can be expressed as

p(R, f)=−jr0c0
Hn (kR)
H'n(ka)

[Vn cos (nf)+Un sin (nf)]. (23a)

After using the asymptotic form of the Hankel function for kR�n in equation (23a) it
is readily apparent that the associated far field pressure for the circumferential mode can
be expressed as

p(R, f)=X 2
pkR

e−j(kR− p/4) −jr0c0 e−jnp/4

H'n(ka)
[Vn cos (nf)+Un sin (nf)]. (23b)

Upon recalling that the far field presssure has been expressed as a function of the internal
source distributions in equation (19), the following Fourier transforms or integral
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T 1

cni coefficients versus n and i

n i=0 i=1 i=2 i=3

0 1 0 0 0
1 0 1 0 0
2 −1 0 2 0
3 0 −3 0 4

equations of the first kind are obtained for the internal source distributions by equating
the results in equations (19) and (20) to the corresponding components in equation (23):

g
a

−a

sm,n (x) e jk cos (f)x dx=−jn+1 4Vn

kH'n (ka)
cos (nf) (24a)

and

sin (f) g
a

−a

sd,n (x) e jk cos (f)x dx=jn+1 4r0c0Un

kH'n (ka)
sin (nf). (24b)

In order to determine sm,n (x) and sd,n (x) by using equation (24), de Moivre’s identity
is first noted:

e jnf =[cos (f)+ j sin (f)]n. (25)

After equating the real and imaginary parts of both sides of the equation, it is apparent
that

cos (nf)= s
n

i=0

cni cosi (f) (26a)

and

sin (nf)= sin (f) s
n

i=0

sni cosi (f), (26b)

where the cni and sni are constants [13]. It is noted for n even (odd) that cni =0 for i odd
(even). For n even (odd) it is noted that sni =0 for i even (odd). Tabulated values of cni

and sni are presented in Tables 1 and 2 for n=0, 1, 2 and 3.

T 2

sni coefficients versus n and i

n i=0 i=1 i=2 i=3

0 0 0 0 0
1 1 0 0 0
2 −0 2 0 0
3 −1 0 4 0
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Now sm,n (x) can be determined via the substitution of equation (26a) into equation (24a),
to obtain

g
a

−a

sm,n (x) e jk cos (f)x dx=−jn+1 4Vn

kH'n (ka)
s
n

i=0

cni cosi (f). (27)

After noting the following property of the Dirac delta function d(x),

g
a

−a

d(p)(x) e jk cos (f)x dx=(−jk cos (f))p, (28)

where d(p)(x) denotes the pth derivative, it then follows that

sm,n (x)=−jn+1 4Vn

kH'n (ka)
s
n

i=0

cni
d(i)(x)
(−jk)i. (29a)

A similar expression for sd,n (x) is also readily obtained via the same procedure: i.e.,

sd,n (x)= jn+1 4r0c0Un

kH'n (ka)
s
n

i=0

sni
d(i)(x)
(−jk)i. (29b)

Expressions for the external pressure fields for the internal line source distributions in
equations (29) are presented in the Appendix.

In the light of the exact solution for the internal source distributions in equation (29),
several observations regarding the use of the ISD/SVD method for circular cylinders are
readily apparent. Since d(i)(x) is an even (odd) generalized function for i even (odd), and
for n even (odd) it was noted that cni =0 for i odd (even), then sm,n (x) is an even (odd)
function for n even (odd). It then follows from earlier discussion that the pressure is zero
on the y-axis for n odd. This is of course an expected result, since the associated field is
proportional to cos nf. Via the same type of argument it is apparent that sd,n (x) is an odd
(even) function for n odd (even). It then follows from earlier discussion that the pressure
is zero on the y-axis for n even since the associate field is proportional to sin (nf).

Most striking about the exact solution for the internal source distributions in equations
(29), however, is the singular behaviour and the limited region of support of the source
distribution about the origin due to the nature of the Dirac delta function and its
derivatives. Clearly, as n increases the region of support for any discrete numerical
approximation of sm,n (x) will increase, the peak amplitudes will increase and the resultant
approximation will become more oscillatory. These results are most simply obtained via
the use of central difference approximations to the derivatives of the Dirac delta functions.
Also, as ka increases the maximum number of n for a specified problem will also generally
increase. It is thus to be expected that high frequency problems will be more formidable
to address by using the ISD/SVD method. In contrast to the use of the normal equations
to solve the least mean square error problem for small ka, the present analysis indicates
that SVD methods would be required for large ka. These conclusions are consistent with
the observations noted during recent numerical studies conducted with the method [8–10].

In order to provide some insight into the characteristics of the internal source density
distributions for cylinders with large aspect ratios, the geometry shown in Figure 5 is now
addressed. In contrast to the circular cylinder with an aspect ratio of unity, the aspect ratio
for the indicated configuration is L/a+1. Rather than address the case in which L/a is
finite, the limiting case of L/a infinite is addressed here. Although edge effects are not
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Figure 5. A rectangular cylinder with hemi-cylindrical endcaps.

present in the following analysis, the analysis provides additional insight into the use of
the ISD/SVD method for cylinders with large aspect ratios.

Now consider the limiting case of the geometry shown in Figure 5, where the normal
velocity over the planar surfaces y=2a is symmetric about the mid-surface: i.e.,
v(x, a)=−v(x, −a). The normal velocity is denoted as

v(s, a)=V0 cos (bs), (30)

where s is now measured from the origin x=0 and b is a constant. Since the normal
velocity is symmetric about the mid-surface plane y=0, the internal source distribution
of interest is clearly a linear monopole source distribution denoted here as sm (x).

It is apparent from equation (7b) that sm (x) must satisfy the following integral equation
of the first kind:

V0 cos (bs)=g
a

−a

−n̂ · 9s [g(xs , x0)]y0 =0sm (x0) dx0, ys = a. (31)

As a result of the periodicity of the normal velocity distribution in x, the internal monopole
source distribution is represented as

sm (x)= s0 cos (bx), (32)

where s0 is to be determined. It then follows from equations (31) and (32) that

V0 =−s01I/1y, y= a, (33a)

where, due to the symmetric nature of the integrand, I is expressed as

I=
−j
2 g

a

0

H0(kzy2 + x2) cos (bx) dx. (33b)

The key to evaluating s0 is the following pair of integral identities [13]:

g
a

0

J0(azy2 + x2) cos (bx) dx=g
G

G

F

f

cos ( yza2 − b2)

za2 − b2
,

0,

0Q bQ a, yq 0

0Q aQ b, yq 0
h
G

G

J

j
(34a)

and

g
a

0

Y0(azy2 + x2) cos (bx) dx=g
G

G

F

f

sin ( yza2 − b2)

za2 − b2
,

−
e−yzb2 − a2

zb2 − a2
,

0Q bQ a, yq 0

0Q aQ b, yq 0
h
G

G

J

j

. (34b)
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It then follows for a= k and bq 0 that I can be expressed as

I=g
G

G

F

f

−
j
2

e−jyzk2 − b2

zk2 − b2
,

1
2

e−yzb2 − k2

zb2 − k2
,

0Q bQ k

0Q kQ b

h
G

G

J

j

. (35)

Finally, from equations (33a) and (35) it is apparent that s0 may be expressed as

s0 =62V0 ejazk2 − b2,
2V0 eazb2 − k2,

0Q bQ k
0Q kQ b7. (36)

As a check on the above result, it is noted that if sm (x) is substituted into equation (6a)
and the resultant integral evaluated for yq a by using the integrals in equations (34), the
following expression is obtained for the pressure field:

p(x)=g
G

G

F

f

kr0c0V0

zk2 − b2
cos (bx) e−j( y− a)zk2 − b2,

jkr0c0V0

zb2 − k2
cos (bx) e−( y− a)zb2 − k2,

0Q bQ k

0Q kQ b

h
G

G

J

j
. (37)

The expression (37) clearly satisfies the boundary conditions and the Helmholtz equation
and is thus the solution to the boundary value problem of interest. Of course, for
this problem the solution is obtained more directly via the method of separation of
variables.

The solution for sm (x) defined in equations (32) and (36) is noted to exhibit significantly
different characteristics from the monopole source density distribution for the circular
cylinder. In contrast to the circular cylinder, the region of support is not confined to the
origin but is in fact the entire plane of symmetry. In addition, the spatial dependence of
the source density for the ‘‘large aspect cylinder’’ matches the spatial variation of the
normal velocity on the surface which is in contrast to that of the circular cylinder.

It is now noted that b is a free parameter in the solution for the ‘‘large aspect cylinder’’.
If V0 is considered now to be an even function of b, more general spatially bounded normal
velocity distributions which are symmetric functions of x (and thus s) may be represented
via an integration over b, i.e.,

v(s, a)=
1
2p g

a

−a

V0(b) cos (bs) db (38a)

or, equivalently,

v(s, a)=
1
2p g

a

−a

V0(b) e−jbs db. (38b)

It is then apparent that V0(b) is the Fourier transform of the spatially bounded normal
symmetric velocity distributions v(s, a): i.e.,

V0(b)=g
a

−a

v(s, a) ejbs ds. (39)
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The associated sm (x) for the spatially bounded normal velocity distributions can also
be obtained by integration over b:

sm (x)=
1
2p g

a

−a

2V0(b) e−jazk2 − b2 e−jbx dx. (40)

Similarly, after performing an integration over b in equation (37) the following expression
for the associated pressure is obtained for yq a:

p(x)=
1
2p g

a

−a

kr0c0V0(b)

zk2 − b2
cos (bx) e−j( y− a)zk2 − b2 db, (41a)

or, equivalently,

p(x)=
1
2p g

a

−a

kr0c0V0(b)
zk2 − b2

e−j( y− a)zk2 − b2 e−jbx db. (41b)

Finally, the case of a spatially bounded normal velocity distribution on a rectangular
cylinder of finite length as shown in Figure 5 is simply addressed from the preceding results
for the limiting case of a=0. It is apparent from equations (38) and (40) that sm (x) for
the spatially bounded normal velocity distributions can be expressed as

sm (x)=2v(x, 0+). (42)

The spatial regions of support for the normal velocity and the source density are thus
identical. A direct application of the convolution property of Fourier transforms to
equation (41b) then leads to

p(x)= jkr0c0 g 2[g(x, x0)]y0 =0v(x0, 0) dx0, (43)

which is in agreement with the well known Rayleigh integral solution for the planar
problem [12]. These latter results are of course to be expected for the limiting case.

4. SUMMARY AND CONCLUSIONS

Two-dimensional harmonic radiation and scattering problems arise in many areas of
mathematical physics. Although the focus in the present paper is on acoustic
two-dimensional harmonic radiation and rigid body scattering problems from cylinders of
arbitrary shape with a plane of symmetry, the approach and results are obviously
applicable to a wide range of physical problems which are described mathematically by
the reduced wave equation and Neumann boundary conditions.

A previously developed LMS error method [8–10] has been used to solve the Neumann
boundary value problem via the use of an internal line monopole and dipole source
distribution along the plane of symmetry. SVD methods were presented to determine the
line source harmonic multipole distributions from the specified normal velocity at the
cylindrical surface. Field pressures were simply obtained from line integrals of the source
distributions which, in the far field, reduce to Fourier transform relationships.

Exact expressions for the source strength distributions corresponding to acoustic
two-dimensional harmonic radiation and rigid body scattering from circular cylinders were
developed by using asymptotic and Fourier transform relationships. The resulting source
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strength distributions involve spatial derivatives of Dirac delta functions and thus have
a vanishingly small region of support about the center of the cylinder. The spatial
characteristics of the distributions indicate that problems involving circular cylinders
provide formidable test problems for the general approach. Earlier numerical studies [8–10]
indicated typical accuracy and the suitability of the method for addressing such problems.

In order to provide an insight into the nature of the line source distributions for cylinders
with large aspect ratios, the spatial characteristics of the source strength distributions were
investigated for the geometry of a thin rectangular cylinder with hemi-cylindrical endcaps.
In general, the spatial characteristics of the source strength distributions are closely
matched to the normal velocity distribution for large aspect configurations. For the
limiting case of an infinitesimally thin rectangular cylinder with a symmetric velocity
distribution about the plane of symmetry, the combined internal source distribution
(ISD/SVD) method provides an alternative development of the well known classical
Rayleigh solution to the planar Neumann boundary value problem.

In conclusion, several additional points of interest regarding the use of the combined
ISD/SVD method to address acoustic two-dimensional harmonic radiation and scattering
from cylinders with a plane of symmetry are noted. First, it is noted the line source
distributions are restricted to the region within the cylinder on the plane of symmetry and
are thus not in the external fluid region of interest. The resulting field within the internal
region is non-physical and of no significance to the exterior problem. In this regard the
source distributions here are introduced in a manner closely related to the well known
introduction of image sources to address scattering from an ideally pressure release or rigid
planar boundary [14].

As a second point, it is noted that although the ISD/SVD method has been applied here
to problems involving separable geometries for which closed form solutions exist, the basic
method is applicable to address acoustic radiation and scattering problems from rigid or
elastic bodies with a plane of symmetry. The applicability of the basic method to the
general acoustic radiation and rigid body scattering problem has already been previously
noted [8, 9]. Since the ISD/SVD method can be used to evaluate modal acoustic radiation
impedances [10], the more general acoustic radiation and scattering problem from an
elastic cylinder is readily addressed using the in vacuo eigenvectors of the structure as the
basis functions for the fluid loaded problem. The general procedure to address the
two-dimensional radiation and scattering problem from elastic cylinders is noted to be
analogous to that presented for the axisymmetric radiation and scattering from elastic
shells of revolution [15].

Finally, it is noted that there is an inherent restriction on the method which is associated
with the smoothness of the cylindrical surface S. It is well known that the field or the
gradient of the field in the vicinity of the vertex of a wedge can exhibit a singular behaviour
[1–3]. Since the external field from any internal line source distribution is free of such
singularities it is obvious that the combined ISD/SVD method is not applicable to
cylindrical shapes in which there is not a unique tangent plane at each point on the contour.
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APPENDIX: THE EXTERNAL PRESSURE FIELD FROM A CIRCULAR CYLINDER

Consider the circular cylinder shown in Figure 4, with a normal velocity which
corresponds to a single circumferential harmonic, i.e.,

v(a, f)=Vn cos (nf)+Un sin (nf), (A1)

where n is an arbitrary positive integer. The associated external pressure field can be
expressed as

p(x)= pe(x)+ pa(x), =x=q a, (A2)

where

pe(x)= pm,n(x)= jkr0c0 g[g(x, x0)]y
0
=0sm,n (x0) dx0 (A3a)

and

p0(x)= pd,n(x)=g$1g(x, x0)
1y0 %yn =0sd,n(x0 ) dx0 (A3b)

and where sm,n(x) and sd,n(x) are defined in equations (29).
After noting the following property of the Dirac delta function d(x),

g
a

−a

d(p)(x)g(x) dx=(−1)pg (p) (0), (A4)
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it is easily shown that

pm,n(x)= jn
4r0c0Vn

H'n (ka)
s
n

i=0

cni

( jk)i $1ig(x, x0)
1xi

0 %
x0 =0

(A5a)

and

pd,n(x)= jn+1 4r0c0Vn

kH'n (ka)
s
n

i=0

sni

( jk)i $1iG(x, x0)
1xi

0 %, (A5b)

where

g(x, x0)=−j/4 H0(kz(x− x0)2 + (y− y0)2) and G(x, x0)= lim
y0 −0

1g(x, x0)
1y0

.

(A6a,b)

After performing the operation in equation (A6b), it is easily shown that

G(x, x0)= −
jy

4z(x− x0)2 + ( y− y0)2
H1(kz(x− x0)2 + ( y− y0)2). (A6c)

It is noted that equation (A5) provides an alternative description of the pressure field
to the expression in equation (23a). It is then apparent from equations (A3) and (A5) that
the series in equation (A5a), [A5b] must be equivalent to the first (second) term in equation
(23a). Rather than address the general case, several specific cases are addressed in the
following paragraphs to illustrate the equivalence.

First, consider, the case of n=0 in equation (A5a), which leads to

pm,0(x)=
4r0c0Vn

H'0 (ka)
c00[g(x, x0)]x0 =0. (A7)

Equation (A7) can be expressed by using the coefficients in Table 1 as

pm,0(x)=−jr0c0
H0(kR)
H'0 (ka)

V0, (A8)

which is in agreement with the analogous result from equation (23a). The case of n=1
in equation (A5a) is also simply addressed and leads to

pm,1(x)= j
4r0c0V1

H'1 (ka)
1

( jk) $1g(x, x0)
1x0 %

x0 =0

. (A9)

Since

[1g(x, x0)/1x0]x0 −0 = j cos (f)kH'0(kR), (A10)

it then follows that

pm,1(x)= jr0c0
Hi(kR)
H'1 (ka)

V1 cos (f), (A11)
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which is in agreementwith the analogous result from equation (23a). Finally the case of n=2
in Equation (A5a) is also simply addressed and leads to

pm,2(x)=
4r0c0V2

H'2 (ka) $g(x, x0)+
2
k2 $12g(x, x0)

1x2
0 %

x0−0
% (A12)

where

$12g(x, x0)
1x2

0 %
x0 =0

= −
jk
4R

[sin2 (f)H'0(kR)+ cos2 (f)H'0(kR)kR]. (A13)

After noting that

kRH00 (kR)= − kR
dH1(kR)
d(kR)

, (A14a)

and

kR
dH1(kR)
d(kR)

= kRH0(kR)−H1(kR), (A14b)

simple algebraic manipulations lead to the expression

pm,2(x)=−jr0c0
H2(kR)
H'2 (ka)

V2 cos (2f), (A15)

which is of course the expected result from equation (23a).


